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ABSTRACT
Social robots need non-verbal behavior to make an interaction
pleasant and efficient. Most of the models for generating non-verbal
behavior are rule-based and hence can produce a limited set of
motions and are tuned to a particular scenario. In contrast, data-
driven systems are flexible and easily adjustable. Hence we aim to
learn a data-driven model for generating non-verbal behavior (in a
form of a 3D motion sequence) for humanoid robots.
Our approach is based on a popular and powerful deep generative
model: Variation Autoencoder (VAE). Input for our model will be
multi-modal and we will iteratively increase its complexity: first, it
will only use the speech signal, then also the text transcription and
finally - the non-verbal behavior of the conversation partner. We
will evaluate our system on the virtual avatars as well as on two
humanoid robots with different embodiments: NAO and Furhat.
Our model will be easily adapted to a novel domain: this can be
done by providing application specific training data.
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1 INTRODUCTION
Robots are moving out of the industrial environment and becoming
an integral part of our life. This puts robots in the contact with
human and raises the importance of human-robot interaction.
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Non-verbal behavior is a crucial part of human-human communi-
cation [16, 20]. We convey plenty of information using non-verbal
behavior, such as intent, emotional state, and attitude [17]. Non-
verbal behavior is also often used to disambiguate a message [9].
In order for robots to have human-like communication capabilities,
they need to be able to produce and perceive non-verbal communi-
cation in a manner resembling humans. This can enable pleasant,
natural and efficient interactions between humans and robots.

Most of the existing work on modeling non-verbal behavior for
social humanoid robots is based on rule-based methods [2, 4, 23].
While those systems often perform well, they require extensive
encoding of expert knowledge. Apart from that, they suffer from
limited flexibility and variability.

Data-driven systems in contrary do not require expert knowl-
edge, because they are learned from data. They also allow for more
variability, since a non-verbal behavior generated by a data-driven
system is not limited to a set of rules. These properties make data-
driven systems an attractive research direction in robotic non-verbal
behavior modeling.

The goal of this work is to build a data-driven non-verbal behav-
ior generation system using machine learning tools. Deep Neural
Networks (DNN) have become the state-of-the-art tool across many
domains of human data, such as speech recognition [11], computer
vision [12], and machine translation [5]. These kinds of methodol-
ogy have been also widely applied to human skeleton modeling:
for motion prediction [19] and classification [6]. For this reason,
we believe this is a promising approach to the problem we aim to
address.

Non-verbal behavior of humans is correlated with both their own
verbal behavior, as well as the behavior (verbal and non-verbal) of
the conversational partner [9]. We want to learn this correlation
in order to create a generative model of non-verbal behavior for a
humanoid robot. This task is highly non-trivial, as all these factors
interact in a complex manner. So we are going to do it step by step.

We will begin by learning a mapping from a human speech
signal (mainly its energy and prosody) to the corresponding upper
body motion. Then we will add the text transcription of the speech
signal as additional input to the system. The mapping will first be
used to generate plausible upper-body motion for a virtual human,
which will then be re-targeted to a humanoid robot. Later we will
incorporate the non-verbal behavior of the conversational partner
as an additional input to the system. Finally, we will learn a similar
mapping for facial expressions and execute it on the robot Furhat.
As a result, our system will be capable of producing non-verbal
behavior in two different modalities: upper body motions and facial
expressions.
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In summary, we want to find answers to the following questions:

(1) Can upper body gestures, generated based only on the speech
signal, appear natural to a human?

(2) How can we measure if the robot motion appears natural?
(3) Which architecture of DNN is the best for generating non-

verbal behavior (given limited amount of training data)?
(4) How can the non-verbal behavior of a conversational partner

be incorporated?

2 RELATEDWORK
2.1 Rule-based systems
Generation of non-verbal behavior has been traditionally done by a
rule-based system [7, 10, 13, 21]. The BEAT toolkit [7] can be used
to generate synchronized non-verbal behaviors and synthesized
speech of the given text input by a virtual character. This system
uses linguistic and contextual information of the text to choose an
appropriate gesture. The mapping is contained in a set of rules from
the non-verbal conversational research. Ng-Thow-Hing et al. [21]
proposed a model for synchronized gesture motion generation with
an arbitrary text input. They could generate many different gesture
types: emblems, deictics, metaphoric and iconic gestures and beats.
Fernández-Baena et al. [10] produced gestures based on the speech
signal. Their rule-based system was derived for a particular corpus
and for the Spanish language only, so it cannot generalize to other
situations, which is a typical problem of rule-based systems.

2.2 Data-driven systems
Recently, limitations of the rule-based system motivated rising in-
terest in the data-driven systems. Liu et al. [18] used a data-driven
approach for a social robot, serving as a shopkeeper in a fully
autonomous way. However, it had no non-verbal behavior, only
moving from A to B and speech production. Admoni and Scassel-
lati [1] built a model for generating non-verbal behavior, where
both gaze and gestures were discretized. For decision making, they
used k Nearest Neighbor (kNN) with majority votes. This system
was not evaluated on robots, but while predicting human behavior
in their dataset.
Several authors have explored data-driven approaches for the task
of speech to motion mapping. For example, Chiu et al. [8] pre-
dicted the discrete set of co-verbal gestures, using a machine learn-
ing tool based on DNN and Conditional Random Fields (CRF). They
worked with a virtual character. Takeuchi et al. [24] used DNN to
produce upper body gestures based on the speech signal. However,
user studies could not confirm any improvement over the baseline,
probably due to quiver in the generated motion. Sadoughi et al. [22]
bridged data-driven and rule-based approaches. They used Proba-
bilistic Graphical Models (PGM) with an additional hidden node,
which contained contextual information. They evaluated only 3
hand gestures and 2 head motions.

The novelty of our approach, compared to earlier work, is that we
aim to generate general, continuous smooth non-verbal behavior,
not only a discrete set of motions.

3 PROBLEM FORMULATION
The main focus of our work is generating kinesics motion, mainly
upper body gestures and facial expressions. In their influential paper
[9], Ekman and Friesen identify five major categories of kinesics:

• emblems: which has a direct verbal analogy (such as the "ok"
gesture). Emblems are usually used to convey a message,
which could be otherwise expressed through words.

• illustrators: which create a visual image and support the
spoken message (such as holding your hands apart to indi-
cate size). These gestures are typically less conscious and
intentional as emblematic gestures.

• adaptors: body adjustments and other movements made with
little awareness (such as shifting body and/or feet position
when seated). The interpretation of adaptors is very difficult,
often speculative and uncertain [9], especially for a robot,
which does not need to adjust its pose.

• affect displays: expressing emotion, primarily through fa-
cial expressions. Our emotions and hence affect displays
depend on the context of the verbal message as well as on
the emotional state of the conversational partner.

• regulators: body movements that control, adjust, and sus-
tain the flow of a conversation (for example nods and gaze
behaviors). Regulators are most affected by the non-verbal
behavior of the conversational partner.

In summary, most of a human’s non-verbal behavior is correlated
with the verbal communication of the person speaking or/and with
the behavior of the conversational partner. Learning this correlation
is the core of our approach to the non-verbal behavior generation.

The application scenario would be a robot having a conversation
with a human while producing verbal and non-verbal signals. The
input to our generative model would be a text of the utterance to
be produced, its speech signal, as well as the verbal and non-verbal
behavior of the conversational partner. Output would be the speech
utterance and the corresponding non-verbal behavior for the robot.
For the humanoid robot NAO, which has a physical body, we will
generate mostly emblems and illustrators. While for the robotic
head Furhat we will mostly generate affect displays.

4 OUR APPROACH
We decompose the challenging task of conditioning a generative
model (for non-verbal behavior) on the text of the utterance, its
speech signal and the verbal and non-verbal behavior of the con-
versational partner into smaller steps, and will add one modality at
a time:

(1) Speech only,
(2) Speech and text,
(3) Speech, text and non-verbal behavior of a dialogue partner.

4.1 General Framework
We will start by learning a mapping from a human speech signal to
the corresponding upper body motion sequence of this human:

m ∼ F (s) (1)
where s = (s1, s2, ...st ) is a sequence of the relevant features (for
example F0 contour, energy of the speech signal, as well as their
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Figure 1: Illustration of the motion representation learning.

first derivatives) from the speech signal and m = (m1,m2, ...mt ) is
a sequence of 3D positions of the joints of a human skeleton.

We express F as a random distribution conditioned on s from
whichm is sampled. We aim to learn this distribution from a dataset
of recorded motion sequences [25]. A popular and powerful model
for learning a probabilistic generative model is the Variational
Autoencoder (VAE) [15].

4.2 Motion Encoding
In the first stage, we will learn a compact motion sequence represen-
tation using a VAE. A VAE consists of an encoding and a decoding
network and a latent state variable (see Figure 1). In our model, the
encoding network takes T time-frames of the motion as an input
mt = (mt+1,mt+2, ...mt+T ) and produce the mean and variance for
the Gaussian distribution for the lower-dimensional representation
z , which is being decoded back to an original sequence.

The first model assumption is that the data m 1 is generated
based on the latent variable z and has a Gaussian noise:

m ∼ N(Md (z),σ 2
c I ) (2)

whereMd is a DNN, σc is a constant variance.
The latent variable has the prior distribution:

z ∼ N(0, I ) (3)
The posterior over the latent variable p(z |m) is intractable, so

we approximate it with another Gaussian:
µ(m),σ (m) = Me (m) (4)

q(z|m) = N(µ(m),σ (m)2I ) (5)
whereMe is another DNN.

The model is trained using variational inference on a set of
recorded upper-body motions mi : both Neural NetworksMe and
Md are learned from data.

4.3 Speech To Motion Mapping
In order to obtain a probabilistic mapping from speech to motion,
we propose to replace the encoderMe with a mapping from speech
to the latent state-space parameters µ and σ :

µ(s), µ(s) = Se (s) (6)
where Se is a DNN. The decoderMd , learned as described in Section
4.2, is kept fixed during training of speech to motion mapping. The
network is trained with a set of recorded upper-body motions
mi and the corresponding speech utterances si . We optimize an
Euclidean distances ∥µ(si) − µ(mi )∥ and ∥σ (si) − σ (mi )∥.
1We omit subscript and writem instead ofmt (to simplify the notations)

Figure 2: Illustration of the Speech-to-Motion mapping.

Testing During the testing the speech sequence is cut in the
overlapping chunks and each of them is processed by the network.
In order to achieve smoothness of the motion, we propose to change
the computation of z to sample close from the previous sample. We
do it by the following model assumptions:

zτ ∼ p(zτ |zτ−1, sτ ) (7)

p(zτ |zτ−1, st ) ∝ N(zt |µτ ,σ 2
τ I ) ∗N(zt |zτ−1,σ 2

z I ) (8)
where σz is a standard deviation in the latent space calculated
over the training set. Additional smoothing might be applied to the
resulting motion sequence.

5 RESEARCH PLAN
The research plan and tentative schedule are outlined below.

2018
(1) Learn a mapping from the speech sequence to the 3D motion

sequence. Input will be a speech signal of a human. The
output will be the 3D motion sequence that the human could
have used while saying the speech from the input. This
mappingwill be a DNN based on VAE (as described in Section
4) trained on an existing dataset [25].

(2) Collect a dataset for further experiments: professional mime
doing public speaking on similar topics with a diverse body
language (we will record sound and 3D motion and will have
the transcription given). We aim to record at least 4 hours.2

(3) Extend the previous system to incorporate themeaning (tran-
scription) of the utterance so that the body language depends
on what is being said.

(4) Execute mapping from human motion to robot motion on
the NAO robot platform: from a predefined human skeleton
sequence to a set of commands for NAO, using re-targeting
and inverse kinematics.

2019
(1) Execute the mapping from speech and text to motion on the

NAO robot: make NAO accompany a speech stream with
upper body motion. The speech stream will be generated
from a given text.

(2) Evaluate the system from the step above by a user study,
where users will evaluate naturalness of NAO saying an ut-
terance 1) without moving at all, 2) with rule-based behavior
generation and 3) with data-driven behavior generation (our
system).

2Related work [24] used 2 hours of speech
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(3) Design and execute an interaction scenario, where a human
is talking to a NAO, which uses the system above to generate
its non-verbal behavior.

(4) Extend this system so that it takes into account the human
motion as well as text and speech for producing a robot
motion. So the VAE will get yet another input: the MoCap
data of the conversational partner.

2020
(1) Learn a mapping from the speech and text signal to a facial

expression sequence. This mapping should be learning from
data collected in a robot-patient interaction scenario (see the
EACare project [14]).

(2) Implement the mapping described in step (1) on the Furhat
[3] platform.

(3) Integrate the system from step (2) into the EACare [14]
demonstrator.

(4) Evaluate the system from step (3) by a user study.

6 CONTRIBUTIONS
We expect the following contributions from this project:

(1) A data-driven generative model of human upper body mo-
tion

(2) A data-driven generative model of human facial expressions
(3) A data-driven generative model for the non-verbal behavior

of the humanoid robots
All these mappings will be produced taking into account:
• speech signal
• speech transcription
• non-verbal behavior of the conversational partner

Since all of these systems are data-driven they would be adapt-
able to a novel and/or specialized domain: by collecting the applica-
tion specific training data. For example, a model of the non-verbal
behavior of a doctor can be built using recordings of doctors inter-
acting with patients. This will be done in order to adapt the model
for the EACare project [14].
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